

High resistance screen made of a sturdy Aluminium-Magnesium alloy BRAID (ALMg). The braiding process is operated by means of 24 spools braiding machines. (50% more intersections if compared to traditional 16 spools machines.) This braid is HIGHLY EFFECTIVE AGAINST LOW FREQUENCY IMPULSIVE NOISES.

SCREENING

PERCENTAGE: 82% 96 wires

Triple layer screening tape, (foil), highly effective against high frequency interferences. **SCREENING**

PERCENTAGE 100%

L-POL-AL

Trampling-resistant, UV shielded PE jacket to be used in particular for underground and outdoor installations.

PE Ø 5 mm ± 0.15

(0.197 inches ± 0.0059)

ATTENUATION at 20°C/68°F

Direct Burial

FREQUENCY	dB/100m	dB/100f
1,8 MHz	1,7	0,52
3,5 MHz	2,3	0,70
7,0 MHz	3,0	0,91
10 MHz	3,45	1,05
14 MHz	4,0	1,22
21 MHz	4,84	1,48
28 MHz	5,5	1,68
50 MHz	7,1	2,16
100 MHz	9,49	2,89
144 MHz	11,1	3,38
200 MHz	12,8	3,90
400 MHz	18,38	5,60
430 MHz	19,0	5,79
800 MHz	26,57	8,10
1000 MHz	29,88	9,11
1296 MHz	34,2	10,42
2400 MHz	47,58	14,50
3000 MHz	53,5	16,31
4000 MHz	61,0	18,59
5000 MHz	68,6	20,91
6000 MHz	75,6	23,04

High pressure physical injection foamed polyethylene TRIPLE LAYER DIELECTRIC FPE Ø 3 mm ± 0,05 (0.118 inches ± 0.0019)

Inner conductor: 99,99% pure electrolitic annealed bare copper. (annealed = thermal softening process)

Cu \emptyset 1,13 mm ± 0,05 (0.044 inches ± 0.0019)

ELECTRICAL DATA

Impedance @200MHz: 50 Ohm ± 3 Minimum bending radius: Multiple bends/single bend 50/25 mm (1.97/0.98 in) -45°C to +70°C (-49°F to +158°F) Temperature: Capacitance: $(23.2 pF/ft \pm 2)$ $76 \text{ pF/m} \pm 2$ Velocity ratio: 85 %

Screening efficiency:

100-2000 MHz >105 dB A++ Class

Inner conductor resistance: 17 Ohm/Km (5.2 Ohm/1000ft) Outer conductor resistance: 34 Ohm/Km (10.4 Ohm/1000ft)

Tension test (spark test): 8 kV

Weight (100m/100ft): 2,35 Kg (5.18 lb)

Maximum peak power: 2000 WATT

Connectors: C.N.AC5M-S; C.UHF.AC5M-S; C.BNC.AC5M-S;

C.TNC.AC5-M-S

SRL

Waterproof

Sturdy

0,3-600 MHz >30 dB 600-1200 MHz >28 dB 1200-2000 MHz >25 dB

400 MHz

102 W

FO	WER HANL	LING (at 40 C/104 F)	
FREQUENCY	MAXP	FREQUENCY	MAXP
1,8 MHz	1172 W	430 MHz	99 W
3,5 MHz	837 W	800 MHz	71 W
7,0 MHz	625 W	1000 MHz	63 W
10 MHz	543 W	1296 MHz	55 W
14 MHz	471 W	2400 MHz	39 W
21 MHz	394 W	3000 MHz	35 W
28 MHz	346 W	4000 MHz	31 W
50 MHz	268 W	5000 MHz	27 W
100 MHz	198 W	6000 MHz	25 W
144 MHz	170 W		
200 MHz	146 W		

Given a power fed to the X value (any value expressed in Watts), the actual power output of the cable is shown in the table in the form of remaining percentage. (for example, if we use a cable such as M&P-AIRBORNE 5, entering 1000 Watts over a length of 35m, at a frequency of 144 MHz, there remains 41.1 % of 1000). For maximum applicable power, see the Power Handling of the cable concerned. From these values, have already been deducted the SRL values, typical of each one of our models, for the respective frequencies.

REMEMBER: Make sure to match the line accurately!

	M&P-AIRBORNE 5 /.200"														
	length in meters														
		5	10	15	20	25	35	50	75	100	130	160	200	300	
	3,5	98.2	96.6	95	93.4	91.8	88.8	84.4	77.6	71.3	64.5	58.3	51	36.4	
	7	97.3	94.9	92.4	90.1	87.8	83.3	77.1	67.7	59.5	50.9	43.6	35.4	21	OSE
	14	95.6	91.5	87.5	83.7	80.1	73.3	64.2	51.5	41.3	31.7	24.3	17	7	Oseful signal output (residual power %)
HZ	28	93.9	88.3	83	78	73.4	64.8	53.9	39.5	28.9	19.9	13.7	8.3		Sign
(MHz)	50	92.2	85.1	78.5	72.4	66.8	56.9	44.6	30.1	19.9	12.3	7.7	3.9		laic
	144	88	77.5	68.3	60.2	53	41.1	28.1	14.9	7.8	3.6] d
Frequencies	430	80.2	64.4	51.7	41.5	33.2	21.5	11.1	3.6						ות (
en	1200	67.8	46.2	31.4	21.3	14.4	6.4								res
귱	2400	56.2	31.9	17.7	9.6	5									dua
-re	3000	52	27.2	13.8	6.5										
	4000	46.4	21.4	9] We
	5000	39.1	14.3	3											%
	6000	26													

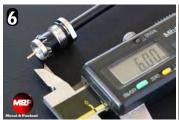
M&P-AIRBORNE 5 /.200" (Power Handling/Temperature)

		Temperature C° / F°										
		-10 / 14	-5 / 23	0/32	10 / 50	20 / 68	30 / 86	40 / 104	50 / 122	60 / 140	70 / 158	
	1,8	1600	1600	1600	1594	1467	1317	1172	1000	827	656	
	3,5	1296	1252	1215	1138	1048	941	837	714	591	469	
	7	968	935	908	850	783	703	625	533	441	350	
N	10	841	813	789	739	680	611	543	464	384	304	
(MHz)	14	729	705	684	641	590	530	471	402	333	264	
	21	610	589	572	536	493	443	394	336	278	221	
Ze	28	536	518	502	470	433	389	346	295	244	194	
Frequenze	50	415	401	389	364	335	301	268	228	189	150	
<u> </u>	100	307	297	288	270	248	223	198	169	140	111	
eq	144	264	255	248	232	213	192	170	145	120	95	WAT
ш	200	226	218	212	198	183	164	146	124	103	82	
	400	158	153	148	139	128	115	102	87	72	57	-
es	430	153	148	143	134	123	111	99	84	70	55	
<u>.</u>	800	109	106	102	96	88	79	71	60	50	40	
e L	1000	97	94	91	85	79	71	63	54	44	35	
Frequencies	1296	85	82	80	75	69	62	55	47	39	31	
ē	2400	61	59	57	54	49	44	39	34	28	22	
ш	3000	54	52	51	48	44	39	35	30	25	20	
	4000	48	46	45	42	38	35	31	26	22	17	
	5000	42	41	40	37	34	31	27	23	19	15	
	6000	38	37	36	34	31	28	25	21	18	14	

Connector assembly

Connector "N" type: C.N.AC5M-S

black PVC outer jacket at the nents A, B, C and immedicut, as shown in picture 2, having opened the braid picture and cut the excess. indicated length shown in the ately after, make a circular rotate the cable 180 de- as shown in the picture. caliber (in mm). Subsequent- cut on the red PE jacket at grees and make a second Push component D bethe indicated length shown in the caliber (in mm). Sub- order to facilitate the intro- braid until it stops against sequently remove it.



cut in the same way, in tween the foil and the duction of component D the red PE jacket.

Make a circular cut on the Insert in the cable compo- After having made the first Insert component D after Flatten the wires as shown in the

Cut and remove the tape and dielet-Insert one of the two teflon discs and Insert the second teflon disc as ric for a lenght as shown in the pic- subsequently the central pin. Solder shown in the picture. ture (in mm).

the pin to the inner conductor, inserting tin in the provided hole. Avoid heating the pin for a too long time in order not to damage with excessive heat the cable dielectric. (which is not made in teflon!)

Insert the connector and fasten accurately until the o-ring present in component A, will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Connector "UHF" type: C.UHF.AC5M-S

Insert in the cable components After having made the first Insert component D after Push A, B, C and immediately after, make a circular cut on the jacket at the indicated length shown in the caliber. (in mm). Subsequently remove it.

cut, as shown in picture 2, having opened the braid rotate the cable 180 de- as shown in the picture. grees and make a second cut in the same way, in order to facilitate the introduction of component D (pic.3 and 4)

between the foil and the braid until it stops against the iacket.

component D Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and dieletric for a lenght as shown in the picture.

Insert the connector and solder it with tin to the inner conductor (see picture above). Avoid heating for a too long time in order not to damage with excessive heat the cable dielectric (which is not made in teflon!)

Fasten together the connector and component A, until it will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Messi & Paoloni srl Via G. Conti 1 - 60131 - Ancona Tel. +39.0712861527 Fax. +39.0712861736 www.messi.it - info@messi.it

CONNECTORS AVAILABLE FOR M&P-AIRBORNE 5 /.200"

C.N.AC5M-S

C.UHF.AC5M-S

C.BNC.AC5M-S

C.TNC.AC5-M-S

Messi & Paoloni srl

Via G. Conti 1 - 60131 - Ancona Tel. +39.0712861527 Fax. +39.0712861736 www.messi.it - info@messi.it